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Abstract

This study aims at developing a poker playing card classifier, capable of both predicting the
number and suit of poker cards found in an input image. To achieve this, the team analysed
three different architectures: You Only Look Once (YOLO), Faster Region-based Convolutional
Neural Network (Faster R-CNN), and Detection Transformer (DETR).

In order to train the classifier, the team used a publicly available dataset, consisting of 20′000
playing card images, which were recorded under varying light conditions and differing cam-
era angle settings. Since the dataset was labelled with a YOLO-specific format, the dataset has
been preprocessed for use with the Faster R-CNN and DETR implementations.

The analysis showed that especially the YOLOv8 model achieved high accuracy, outperform-
ing the Faster-RCNN and DETR models. Faster R-CNN also showed promising results. How-
ever, DETR lagged behind due to issues experienced in the implementation phase. The team
concludes that while YOLOv8 is currently the most suitable model for this application, further
research, especially on DETR, is needed for an extensive evaluation. Future work will include
addressing the challenges of DETR and integrating the developed card classifier into a mobile
application for real-time analysis of poker hands.
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1 Introduction
The goal of this project is to build a playing card detector as part of the final project for the
Deep Neural Networks course at the University of Agder. The model should be able to pre-
cisely classify the suit as well as the number of one or more playing cards in a given input
image. The main idea is to allow beginners to see what poker hand they have and to check
their winning chances. This report however only covers the evaluation and development of
a poker card detector. The development of a mobile application is out of scope and is subject
to future work. Three different object detection architectures are evaluated in achieving the
above mentioned goal: You Only Look Once (YOLO) [1], Faster Region based Convolutional
Neural Network (Faster R-CNN) [2] and Detection Transformer (DETR) [3].

2 Background information
Object detection has been a field of study which has seen massive improvements in recent
years and multiple different approaches emerging: Non-neural approaches like SIFT or HOG
and neural network based approaches, which this project focuses on.

Object detection algorithms can be divided into two main categories: Single-stage and multi-
stage detectors. The main difference between the two is the number of steps required to detect
objects in an image. Multi-stage detectors use multiple steps to detect objects, while single-
stage detectors use only one step. Single-stage detectors are faster, but less accurate, while
multi-stage detectors are slower, but more accurate in most cases [4].

Original object detection system were multi-staged. The original R-CNN model e.g. used
multiple separately trained models [5]. A CNN to generate the feature maps of the input re-
gion proposals, created using mechanisms like selective search, and Support Vector Machines
(SVM) trained on each class for classification. This approach leads to slow and inefficient
pipelines, since each feature map needs to be run through each SVM. Additionally training
is complicated. Later improvements to R-CNN combined the feature extraction and classifica-
tion into a single convolutional network with sibling dense outputs for softmax classification
and bounding box regression [6]. In Faster R-CNN the introduction of the Region Proposal
Network (RPN) allowed end-to-end training of the pipeline from generating the region pro-
posals and the resulting classification and bounding box regression [2].

The YOLO system is, since its inception in 2015, designed as a single-stage detector, which
defines object detection as a regression problem [7]. YOLO directly predicts bounding box
coordinates and class probabilities in one pass through the network. Rather than splitting the
image up into multiple sections and then running a neural network multiple times through
the sections, YOLO aims to only look once at the image and compute the output on the whole
image, keeping the global context. Accordingly, this architecture reduces the complexity of
the process and enhances the speed of the classification as well. The increased speed is crucial
for real-time applications, for example.

The aim of DETR [3] as designed by Facebook AI research was to apply the at the time new
state-of-the-art textual models to the field of machine vision and object detection, while re-
ducing the complexity compared to the era state-of-the-art object detection models. As with
YOLO, the DETR model is a single-stage detector. But where YOLO and related models depend
on post-processing like NMS, the DETR model outputs the final set of predictions directly [3].
This however moves a lot of the computational complexity back into the model, reducing its
capacities in real-time systems [8], in the trade-off for potentially better accuracy.
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3 Methodology
This section describes the methodology used to solve the detection problem. First, the dataset
is described, including the preprocessing steps. Then, the different architectures that were im-
plemented are described.

3.1 Dataset
A dataset of playing cards was found online [9]. The dataset consists of a total of 20′000 images,
each containing one or more playing cards. The author of the Kaggle dataset itself used a script
available on GitHub [10] to generate the images. Before executing the script, the author took
20s to 30s videos of all 52 playing cards with variable light conditions and angles. The script
then processed the images using open-cv. Moreover, to add more details to the background of
the image, the DTD dataset [11] was used to add a random texture to the background. Finally,
the images get resized to 416x416 pixels and are split into a train/test/validation set (70/20/10%
split).

Figure 1 shows some sample images from the dataset. As can be seen, the images are labelled
with bounding boxes around the suit and number of the card. In total, there are 52 different
classes, one for each card.

Figure 1: Sample images from the dataset with ground truth labels

3.1.1 Preprocessing

The chosen dataset for the project came pre-annotated in the YOLO format [12]. This meant
that the YOLO implementation and training could be underway fast. However, the two other
models were created using the Facebook Research Detectron2 Library [13]. The models in the
default Detectron model zoo and the DETR models use the COCO format [14]. Because of
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this, the dataset had to be converted before it could be used with the Faster R-CNN and DETR
models. This conversion was done using a tool developed by Kim TaeYoung [15], with some
small modifications.

3.2 Architectures
Three different architectures were implemented to solve the detection problem. The following
sections describe the different architectures in detail.

3.2.1 YOLO

The main goal of the YOLO model is to find a good balance between speed and accuracy, while
also maintaining a small model size. Moreover, training a YOLO model does not require a
high-end GPU, which eases the training process and makes it accessible to a wider audience.
YOLO was first presented in 2015 by Joseph Redmon et. al [7] and has since then been greatly
improved. In this project, the current YOLOv8 is used, which has been released in 2023 [16].

The way the original YOLO algorithm works is as follows. First, the input image gets divided
into a square grid with the dimensions S x S (hyperparameter). If a center of an object falls
into a grid cell, this specific cell is then responsible to detect that object. In addition, each cell
will predict B bounding boxes and an additional confidence score, which shows how certain
the model is that there is an object in this cell. The confidence score gets calculated using
the Intersection over Union (IoU) between the predicted and ground truth bounding box. In
essence, the IoU measures how much the predicted bounding box overlaps with the ground
truth bounding box. During training YOLO assigns multiple bounding boxes to a cell, how-
ever it will only keep the bounding box with the highest confidence score. Since the YOLO
algorithms is able to classify objects, each grid cell also contains a vector with length C (the
number of classes), which includes the class probabilities. Overall, the final output vector can
be described as S x S x (B * 5 + C), where 5 is the length of the quintuple describing the bounding
box (x, y, bbox_width, bbox_height, confidence_score). Hereby, the x and y coordinates define the center
of the bounding box [7]. Figure 2 visualizes the simplified steps from splitting up the image
into a grid, to the final detections.

Figure 2:  Original YOLO algorithm flow [7]
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3.2.1.1 Network

The YOLOv8 architecture was used to train the model on the given dataset. It utilizes several
essential components to perform object detection tasks. It features a backbone consisting of a
series of convolutional layers, which extract relevant features from the input image. The SPPF
module, along with additional convolutional layers, processes these features across various
scales, while an upsample layer enhances the feature map resolution. The C2f module merges
high-level features with contextual data, boosting recognition accuracy. The final stage, the
detection module, utilizes a combination of convolutional and linear layers to transform high-
dimensional features into final outputs of bounding boxes and object classes. As seen in the
following image, the head is fully decoupled from the backbone. To summarize, the head basi-
cally takes the generated feature maps from the backbone and then further processes them to
produce the final output (bounding boxes and class probabilities). This design ensures YOLOv8
is both lightweight and efficient, maintaining high accuracy in detection [17].

Figure 3:  YOLOv8 architecture visualised [17]

3.2.1.2 Training

The ultralytics package [18] was used, in order to load a pre-trained model. The models have
been pre-trained on the COCO dataset [19]. The ultralytics package provides different versions
of YOLOv8, which mainly differ in the number of trainable parameters, where a higher num-
ber usually results in an increased mAP. In this project, the large YOLOv8 model was trained
on the dataset mentioned in Section 3.1 for 100 epochs. The model started to train with an
initial learning rate of 0.01 and was updated slightly during the training process.
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3.2.2 Faster R-CNN

3.2.2.1 Network

The evaluation of the Faster R-CNN architecture was done using the pre-trained Faster R-CNN
Model X101-FPN from Metas Detectron2 Model Zoo [20]. The model uses the ResNeXt-101
network in the 32x8d setting [21] as the network backbone with the addition of a Feature
Pyramid Network (FPN) [22].

The ResNeXt network extracts feature maps at four different scales using bottleneck blocks,
defined as:

BottleneckBlock(
  (conv1): Conv2d(
    256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
    (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
  )
  (conv2): Conv2d(
    256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
    (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
  )
  (conv3): Conv2d(
    256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
    (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
  )

One bottleneck block calculates multiple convolutions in parallel and aggregates the results.
The number of parallel convolutions i.e. the cardinality C used is 32. The four scales in the
network use 3, 4, 23, and 3 bottleneck blocks respectively. At each scale the FPN takes an
upsampled version of the lower-scale feature map and a lateral output of the corresponding
original feature map of the same scale from the ResNeXt network to create a high-value fea-
ture map [23]. This should theoretically allow the network to be able to detect small features
just as well as big features. The generated feature maps get fed into a Region Proposal Network
(RPN), which generates 1000 object region proposals. The object region proposals and feature
maps get pooled using ROIAlign pooling [24], flattened and fed into two fully connected lay-
ers of size 1024 and two sibling outputs. The first output of size 53 is used to classify each
individual card type in addition of a background class. The second output of size 208 (52x4)
regresses bounding boxes. Figure 4 shows the architecture of BaseRCNN FPN [25] on which
X101-FPN is based on. Note however, that the number of convolutional layers and outputs are
not the same as in the architecture used in the project.

Figure 4:  Architecture of BaseRCNN FPN [25]
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3.2.2.2 Training

The model was loaded with pre-trained ImageNet weights and fine-tuned on the dataset de-
scribed in Section 3.1. The training was run over 10000 iterations, a batch-size of 512 and a
learning rate of 0.00125.

3.2.3 DETR

As stated in Section 2, the aim of the DETR model is to reduce the complexity of object detec-
tion models. The basis for this comes from looking at the problem from a fixed set perspective.
This means that DETR will try to predict 𝑁  objects in a picture every time. At the topmost
layer, it simplifies the problem, by removing the need for the number of objects as well as their
class and bounding boxes. Where 𝑁  with no class simply is marked as ∅, and disregarded in
the end [3].

Further down, it is the basis for the use of the transformer model on this problem space and
allows for loss calculation.

3.2.3.1 Network

Following the goal of reduced complexity, the architecture flow is also quite simple. This can
be seen in Figure 5. Where the first parallel to its textual counterparts is visible in the form of
the initial encoding of the data and the positional embedding.

Figure 5:  Original DETR algorithm flow [3]

As with the transformers used in language models, the data is first encoded into a latent space
[26]. With respect to object detection this is done using a Convolutional Neural Network. This
is the backbone of the model, which in the case of the implementation used is a ResNet [13].
Since transformers work on sequences, the feature maps are flattened along the filter axes
before they are positionally encoded.

All of this is then fed into a series of transformer encoders, each constructed by a single multi-
headed attention layer and a feed forward network, with batch normalisation and residual
connections in between and on the output.

Once encoded the output is sent to the transformer decoder. The decoder takes a series of 𝑁
object queries and applies multi-head attention (MHA) over them. These object queries are
learned and will eventually point towards a separate part of the image [3], [27], which makes
it the natural query part of the next block of the decoder. Here the MHA layer combines the
keys, values and positional encodings from the encoder stage with the queries of the objects,
before finally sending the data out to the two FFN networks, that make up the head of the
model. Given that the model makes a fixed set prediction, one side of the head predicts prob-
ability for the class of the object, and the other the bounding box.
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The output ̂𝑦 then becomes a set of 𝑁  elements with the type ( ̂𝑐𝑖, ̂𝑏𝑖). Where 𝑐𝑖 is a predic-
tion of the probability of classes of this object. 𝑏𝑖 is a vector of the bounding box coordinates
(𝑥, 𝑦, 𝑤, ℎ)

Further details around the architecture can be read in [3], especially in Appendix A.3

3.2.3.2 Loss

One of the main challenges in object detection is the calculation of loss. This is again simpli-
fied by the fixed set prediction. Where the ground truth for the image 𝑦 now can be expressed
as a set padded with ∅ elements to the size 𝑁 . A permutation of ̂𝑦 can then be found where
the predictions will be mapped to the ground truths, allowing the loss to be calculated be only
taking the cases where 𝑐𝑖 is not ∅ [3], [27].

ℒmatch(𝑦𝑖, ̂𝑦𝜎(𝑖)) = −𝟙{𝑐𝑖≠∅} ̂𝑃 𝜎(𝑖)(𝑐𝑖) + 𝟙{𝑐𝑖=∅}ℒbox(𝑏𝑖, ̂𝑏𝜎(𝑖))

equation 1:  DETR Loss calculation [3]

Where ℒbox is a similar to YOLOs IoU as described in Section 3.2.1

3.2.3.3 Training

The models’ backbone was loaded with ImageNet weights and trained upon the dataset. The
model was trained over a series of iterations and two different backbones, with a batch size
of 2 and a learning rate of 0.0001.
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4 Results
This section contains the results of the implemented models. The results are presented in the
form of graphs and tables, in order to evaluate the performance and accuracy of the classifiers.
Finally, we compare the implemented architectures against each other to see which one per-
formed best.

4.1 YOLO
As described in Section 3.2.1, the team used the YOLOv8 version to train the model. The results
of this model are presented in this chapter.

4.1.1 Training

Training lasted for 18h 44m and 19s. This equals about 11.25 minutes per epoch. The per-
formance of the model can be evaluated in several ways. First, the team analysed the mean
average precision (mAP), which calculates the average AP values across all classes. The aver-
age precision (AP) itself can be considered as the area under the precision-recall curve [19].
Figure 6 shows both the mAP50 and mAP50-95 scores. These diagrams show the mean average
precision for different intersections over union thresholds. While the mAP50 shows the mAP
for an IoU threshold of 0.5, the mAP50-95 diagram shows the mAP with differing IoU thresh-
olds between 0.5 and 0.95. The main difference between these two diagrams is, that the mAP50
mainly displays how well the model predicts generally predicts the bounding boxes, whereas
the mAP50-95 metric shows how the model performs with a more strict threshold.

The model reached a final mAP50-95 value of 0.9718 after 100 epochs. In addition, the mAP50
metric reached 0.9943, showing that the easier detections were almost always detected.

Figure 6: mAP metrics for YOLOv8 model
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Figure 7 shows the losses for the bounding box prediction and class detection.

Figure 7: box and class los for YOLOv8 model

Figure 8 shows the confusion matrix for the classifier. Instead of showing the raw counts, the
normalized values are displayed in order to have a better understanding of the proportions.
Overall, the model was able to detect all classes very well.

Figure 8: Normalized confusion matrix for YOLOv8 model
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4.1.2 Validation

The validation set consisted of 4000 images, which equals 20% of the whole dataset. Figure 9
shows a sample image from the validation set with the predictions as annotations. It can be
seen, that the model was able to classify and identify almost all cards correctly and with high
confidence.

Figure 9: YOLOv8 validation sample
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4.1.3 Testing on a different card set

After training the model with a given dataset, the model was tested on a different set of playing
cards. Overall, the model was able to classify the most cards in Figure 10 correctly, however
it performed worse than with the testing set of the original dataset. This might be a sign of
overfitting, as the model does seem to perform worse with a different set of playing cards.

Figure 10: Sample predictions from a dataset with different playing cards
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4.2 Faster R-CNN

4.2.1 Training

Training of Faster R-CNN ran over a time of 1 hour 28 minutes and 45 seconds, with an aver-
age time of 0.5275 seconds per iteration. The maximum reached class accuracy is 0.9658 after
9499 iterations. Interesting to note is, that the model only started being able to identify cards
after around 700 iterations. This is seen in Figure 11.

Figure 11: Training accuracy of Faster R-CNN over 10000 iterations

Figure 12: Training loss of Faster R-CNN over 10000 iterations
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4.2.2 Testing

The highest Average Precision (AP) on the testing dataset reached is 77.5% for mAP50-95 (See
Section A.1 for detailed results). The highest reached per class AP was the 9 of Spades with a
score of 85% and the lowest was the Ace of Spades with an AP score of 59%. An interesting
observation in Figure 13 is, that the hardest symbols to recognize seem to be the Aces, with
the lowest three AP scores being the Ace of Spades, Hearts and Diamonds. Also difficult were
the numbers 10 and 8. It seems no suite in particular, was harder or easier to identify.

Figure 13: Faster R-CNN Average AP Scores

4.3 DETR
The transformers have been overtaking the machine learning world in the past years and this
is why their application on object detection was chosen for comparison with YOLO and Faster
R-CNN in this project. However, the results obtained from DETR were rather bad.

Figure 14 shows a loss curve, where it can be seen that the model learns very early on, but
quickly stagnates and never picks up learning again. This same pattern was true for longer
training times and different backbones.

Figure 14:  10k iteration training with DETR with a r50 backbone
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The additional results can be found in Section A.2. Running interference on the images follows
the loss curve above and gives poor results.

Figure 15:  Results from the DETR model

4.3.1 Analysis

The results here are not in line with the results of the experiments conducted with the offical
DETR publications [3], [8] and the only conclusion is that there is a fault in the setup and
implementations for this project, prohibiting the model from functioning correctly. However,
where these faults lie in the implementation are at the time of writing not known. Multiple
configurations were tried on both short and long training sessions, though always with the
same result.

Multiple hypetheses could be made to explain this result. The most obvious being the mis-
match between the data and the model. The data might need to be augmented to fit the specific
model architecture better. Another lead would be the backbone, which should come ready
with ImageNet weight, but again there might be a mismatch between the backbone and the
pixel mean [13] of DETR.
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4.4 Overall comparison of the models
Due to the shortcomings of the DETR implementation, it does not make sense to compare
its results with the YOLO and Faster R-CNN models. But between the two successful models,
two distinct results can be observed. The YOLO implementation reaches very high precision,
seen in both the mAP50 and mAP50-95 metrics, where the Faster R-CNN model does not perform
as well. The Faster R-CNN architecture is generally good at predicting as the mAP50 shows,
however when we look at a more restricted set, we see that it loses its accuracy when a higher
threshold is used. The opposite is true for the YOLO model, which keeps its high precision
across the classes as higher thresholds are added in. The second observation that can be made,
is that the YOLO model after very few epochs shot past the best result of the Faster R-CNN.
So even though the training of the Faster R-CNN was significantly shorter, the YOLO model
was able to get better results at the same time or faster. The remaining 17 hours of training
simply added extra points to the model.

Both these results are completely inline with the literature research and expectations, since
YOLO is a much more modern model. It would however be interesting to see the results of
Faster R-CNN with the same training times as the YOLO model.

Metrics Faster R-CNN YOLO

Training Time 1h 28m 45s 18h 44m 19s

mAP50 0.975 0.9943

mAP50-95 0.775 0.9718

Table 1: Overall comparison of the implemented models

Reflecting on the results, it is clear who the winning model is for the use case at hand. How-
ever, in a more in-depth analysis, it would have been beneficial to set specific benchmarks for
comparison. An example for this could be an inference speed metric, like seen in [8], since
this is an important factor of usability of the model in final product.
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5 Conclusion
As seen in Section 4.4, the winning model for the use case of card predictions is YOLOv8. This
is however, not a fully evaluated result, given the subpar results the DETR model produced.
The conclusion is, that the YOLOv8 model with additional work and a more extensive dataset
would be a suitable candidate.

The comparison between Faster R-CNN and YOLO was as expected, as it was never considered
to be a real competitor, but mostly served as a baseline and historical perspective.

5.1 Future
In the future of this project, the DETR implementation could be analysed more in depth, so
that it can be added to the comparison of the YOLO and Faster R-CNN models and may serve
as an alternative solution. As stated in Section 4.4 additional metrics could also be added to the
comparison in general. As an extension of this a new more modern version of the DETR im-
plementation was published in the summer of 2023, namely Real Time Detection Transformer
or RT-DETR [8]. This model claims to be the new state-of-the-art in both speed and accuracy,
and should therefore be a consideration for this project as well.

In the grander scope of the project, the card prediction system can be applied to its original
intent, poker hand analysis. This would take the form of a mobile app for the users’ phone,
so they can take a picture of their current poker hand and identify how good their winning
chances are.
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A Appendix

A.1 Faster R-CNN Testing Results

Metric IoU Area MaxDets Value
Average Precision 0.50:0.95 all 100 0.775
Average Precision 0.50 all 100 0.975
Average Precision 0.75 all 100 0.966
Average Precision 0.50:0.95 small 100 0.769
Average Precision 0.50:0.95 medium 100 0.811
Average Precision 0.50:0.95 large 100 −1.000

Average Recall 0.50:0.95 all 1 0.524
Average Recall 0.50:0.95 all 10 0.831
Average Recall 0.50:0.95 all 100 0.831
Average Recall 0.50:0.95 small 100 0.825
Average Recall 0.50:0.95 medium 100 0.850
Average Recall 0.50:0.95 large 100 −1.000

Table 2: Faster R-CNN Average AP and AR Scores over different IoU

Category AP Category AP Category AP
10c 79.214 10d 74.506 10h 71.159
10s 67.214 2c 77.298 2d 76.479
2h 82.058 2s 82.993 3c 83.734
3d 78.617 3h 78.325 3s 79.948
4c 76.841 4d 82.728 4h 76.056
4s 81.742 5c 83.685 5d 78.577
5h 81.589 5s 81.038 6c 80.070
6d 81.352 6h 73.282 6s 82.232
7c 83.683 7d 75.036 7h 82.283
7s 79.880 8c 68.776 8d 71.493
8h 67.800 8s 71.871 9c 79.963
9d 80.954 9h 77.982 9s 85.166
Ac 75.283 Ad 66.527 Ah 63.066
As 58.743 Jc 77.495 Jd 77.059
Jh 73.737 Js 79.245 Kc 76.518
Kd 84.831 Kh 81.249 Ks 84.276
Qc 84.376 Qd 74.764 Qh 74.105
Qs 82.532

Table 3: Faster R-CNN Per-category bbox AP
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A.2 Additional DETR results

A.2.1 DETR with r50 backbone 10′000 iterations

Figure 16:  10k iteration training with DETR with a r50 backbone

Figure 17:  10k iteration training with DETR with a r50 backbone

Figure 18:  10k iteration training with DETR with a r50 backbone
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A.2.2 DETR with r50 backbone 30′000 iterations

Figure 19:  30k iteration training with DETR with a r50 backbone

Figure 20:  30k iteration training with DETR with a r50 backbone

Figure 21:  30k iteration training with DETR with a r50 backbone
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A.2.3 DETR with r50 backbone 100′000 iterations

Figure 22:  100k iteration training with DETR with a r50 backbone

Figure 23:  100k iteration training with DETR with a r50 backbone

Figure 24:  100k iteration training with DETR with a r50 backbone
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A.2.4 DETR with r101 backbone 40′000 iterations

Figure 25:  40k iteration training with DETR with a r101 backbone

Figure 26:  40k iteration training with DETR with a r101 backbone

Figure 27:  40k iteration training with DETR with a r101 backbone
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