=11 iversi
i UiA ity ot aader

IKT210 - CLOUD INFRASTRUCTURE

Group 8 - Robin Meier

Final Project

Autumn 2023

Fakultet for teknologi og realfag

Universitetet 1 Agder

Contents

1 Introduction
1.1 Requirements L e

1.2 Access Information

2 How did the group solve this task

2.1 Cluster. o o o e e
2.1.1 Terraform Configuration L.
2.1.2 Kubernetes Cluster

2.2 CIL . . e
221 ArgoCD
2.2.2 ArgoCD Image Update
2.2.3 Sealed Secrets

2.3 Monitoring
2.3.1 Prometheus
2.3.2 Node Exporter
2.3.3 Grafana
2.3.4 Blackbox Exporter
2.3.5 Alert Manager
2.3.6 Thanos e
2.3.7 Overview of deployed monitoring stack

2.4 ADPDS . . . e
2.4.1 Bitwarden e
2.4.2 Cryptpad

2.5 Additional configuration Lo
2.5.1 Adding Deployments to ArgoCD
2.5.2 Security Configurations L.

3 What problems the group encountered

3.1 Cilium CNI e e
3.2 Cryptpad Browser Compatibility
3.3 Thanos Store Setup

4 Reflection

References

[\)

© © ot W w W

11
12
13
14
15
17
19
20
23
25
26
26
30
34
34
34

35
35
35
35

36

37

1 Introduction

This project concerned itself with setting up a new k8s cluster and configuring multiple different
deployments.

1.1 Requirements

The following requirements were given:

1. Setup a new k8s stack.
2. Setup a CI stack with ArgoCD, ArgoCD Image Update and Sealed Secrets

3. Setup a Monitoring stack with Blackbox Exporter, Prometheus, Alert Manager, Node
Exporter, Grafana and Thanos.

4. Setup Bitwarden
5. Setup Cryptpad

6. Follow the NSA hardening guide for Kubernetes

2 How did the group solve this task

2.1 Cluster
2.1.1 Terraform Configuration

The nodes for the Kubernetes cluster were created using Terraform and deployed on Openstack.
A new network including subnet, router and subnet route was configured for the nodes to reside
in.

resource "openstack_networking network_v2" "IKT210-G-23H-g8-final-network" {

name = "IKT210-G-23H-g8-final"
admin_state_up = "true"
port_security_enabled = "false"

}

resource "openstack_networking_subnet_v2" "IKT210-G-23H-g8-final-subnet" {
name = "IKT210-G-23H-g8-final"
network_id = openstack_networking_network_v2.IKT210-G-23H-g8-final-network.id
cidr "192.210.8.0/24"
allocation_pool {
start = "192.210.8.10"

end = "192.210.8.254"
}
dns_nameservers = ["158.37.218.20", "158.37.218.21", "128.39.54.10"]
gateway_ip = "192.210.8.1"
}
resource "openstack_networking_router_v2" "IKT210-G-23H-g8-final-router" {
name = "IKT210-G-23H-g8-final"
admin_state_up = true

external_network_id = "9992655d-0892-4fe0-8a62-d9dac9044be2" # provider network
}

resource "openstack_networking_router_interface_v2" "IKT210-G-23H-g8-final-interface" {
router_id = openstack_networking_router_v2.IKT210-G-23H-g8-final-router.id
subnet_id = openstack_networking_subnet_v2.IKT210-G-23H-g8-final-subnet.id

}

Listing 5: Terraform network configuration

A variables.tf file was created, to define the variables used to store the connection details to
Openstack and to define a variable setting the names of the nodes.

variable "OS_USERNAME" {}

variable "OS_PROJECT_NAME" {}
variable "OS_PASSWORD" {}

variable "OS_USER_DOMAIN_NAME" {}
variable "OS_PROJECT_DOMAIN_NAME" {}
variable "OS_AUTH_URL" {}

variable "OS_IDENTITY_API_VERSION" {}

variable "servers" {
type = list
default = ["final-master", "final-workerl", "final-worker2"]

}

Listing 6: Terraform variables.tf file

For each node, a floating IPv4 address and a block storage volume of 1TB was created.

resource "openstack_networking floatingip_v2" "IKT210-G-23H-g8-final-fip" {
for_each = toset(var.servers)
pool = "provider"

}

resource "openstack_blockstorage_volume_v3" "IKT210-G-23H-g8-final-storage" {
for_each = toset(var.servers)
size = 1024

Listing 7: Terraform floating address and block storage volume creation

The nodes were created with the names defined in the servers variable and were added to the
previously defined network. Finally the floating address and storage volume is assigned.

resource "openstack_compute_instance_v2" "IKT210-G-23H-g8-final-nodes" {
for_each = toset(var.servers)
name = each.key
image_id = "d8e27e72-42b0-4c5c-890e-04fce014e83b"
flavor_id = "42"
key_pair = "ikt210"

network {
name = "IKT210-G-23H-g8-final"
}
i

resource "openstack_compute_volume_attach_v2" "IKT210-23H-g8-final-attach" {
for_each = openstack_compute_instance_v2.IKT210-G-23H-g8-final-nodes
volume_id = openstack_blockstorage_volume_v3.IKT210-G-23H-g8-final-storage[each.key].id
instance_id = each.value.id

}

resource "openstack_compute_floatingip_associate_v2" "IKT210-G-23H-g8-final-fip-associate" {
for_each = openstack_compute_instance_v2.IKT210-G-23H-g8-final-nodes
floating_ip = openstack_networking_ floatingip_v2.IKT210-G-23H-g8-final-fip[each.key].address
instance_id = each.value.id

}

Listing 8: Terraform node creation and assignment of additional resources

The Terraform configuration was then applied using terraform apply. The resulting nodes are
shown in listing 1.

2.1.2 Kubernetes Cluster

The stack chosen for the Kubernetes cluster is CRI-O as the CRI, Flannel as the CNI and Rook
with Ceph as the CSI.

CRIO-0O Installation

First some environment variables are defined to install the correct version of CRI-O.

export 0S=xUbuntu_22.04
export CRIO_VERSION=1.24

Listing 9: Setting CRI-O environment variables

Then the needed repositories are added to the sources list and the CRI-O package is installed.
CRI-O could then be started.

echo "deb https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$0S/
/"| sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list

echo "deb http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable:/cri-o:/
$CRIO_VERSION/$0S/ /"|sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-
0:$CRIO_VERSION.1list

curl -L https://download.opensuse.org/repositories/devel:kubic:libcontainers:stable:cri-o:
$CRIO_VERSION/$0S/Release.key | sudo apt-key add -

curl -L https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$0S/
Release.key | sudo apt-key add -

apt update
apt install cri-o cri-o-runc -y

Listing 10: Installing CRI-O

systemctl start crio
systemctl enable crio

Listing 11: Starting and enabling CRI-O

Cluster Installation

On all nodes the packages kubelet, kubeadm and kubect] were installed.

curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo gpg --dearmor -o /etc/
apt/keyrings/kubernetes-apt-keyring.gpg

This overwrites any existing configuration in /etc/apt/sources.list.d/kubernetes.list
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpgl https://pkgs.k8s.io/core:/
stable:/v1.28/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update
sudo apt-get install -y kubelet kubeadm kubectl
sudo apt-mark hold kubelet kubeadm kubectl

Listing 12: Installation of kubeadm

On the master node the cluster could then be initialized. The pod network was set to 10.244.0.0/16,
because Flannel uses this subnet by default. The --cri-socket parameter was used to specify,
that CRI-O is used as the CRI.

$ kubeadm init --pod-network-cidr=10.244.0.0/16 --cri-socket=unix:///var/run/crio/crio.sock

Your Kubernetes control-plane has initialized successfully!

Listing 13: Initialization of cluster

To allow the regular ubuntu user to run the kubectl command, the configs were copied into the
users home directory. Listing 15 displays the command to remove the NoSchedule taint from the
master node. This makes it possible to deploy pods on it.

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Listing 14: Configuring kubectl

kubectl taint nodes final-master node-role.kubernetes.io/control-plane:NoSchedule-

Listing 15: Removing NoSchedule taint from master

On the worker nodes the command kubeadm join was then executed to join the cluster.

kubeadm join 192.210.8.88:6443 --token Oguwc2.ftOqexjn21tt0Oc2d \
--discovery-token-ca-cert-hash sha256:4
e891dfbf6af157a3ba8b932f2894bd4ceded2ddfafed28244703d9¢c81e5b981 \
--cri-socket=unix:///var/run/crio/crio.sock

Listing 16: Joining worker nodes to cluster

To confirm the nodes joining the cluster, kubectl get nodes was run on the master.

kubectl get nodes

NAME STATUS ROLES AGE VERSION
final-master Ready control-plane 9m24s v1.28.4
final-workerl Ready <none> 2m27s v1.28.4
final-worker2 Ready <none> 30s v1.28.4

Listing 17: Validating cluster nodes

Flannel Installation

The CNI Flannel was installed using the manifest found on the official GitHub page [1]. After
installing the manifest, a flannel pod was started for each node.

kubectl apply -f https://github.com/flannel-io/flannel/releases/latest/download/kube-flannel.yml

Listing 18: Installing Flannel manifest

$ kubectl get pods -n kube-flannel

NAME READY STATUS RESTARTS AGE
kube-flannel-ds-6rlxd 1/1 Running O 41s
kube-flannel-ds-jj6éwx 1/1 Running O 41s
kube-flannel-ds-nhhgl 1/1 Running O 41s

Listing 19: Validating Flannel installation

Rook Installation

Rook is used to set up a Ceph cluster and provide a block storage class. The installation
manifests were pulled from the official GitHub repository of Rook [2]. The manifests crds.yaml
and common.yaml contain common Rook resources.

kubectl apply -f crds.yaml -f common.yaml

Listing 20: Installing common Rook resources

In the operator.yaml file the parameter ROOK_ENABLE_DISCOVERY_DAEMON was enabled, which allows
Rook to automatically find new volumes, as they are connected to the host system.

ROOK_ENABLE_DISCOVERY_DAEMON: "true"

Listing 21: Enabling discovery daemon in Rook operator

The Rook operator is then installed. In the rook-ceph namespace the added pods are displayed.

$ kubectl create -f operator.yaml
$ kubectl get pods -n rook-ceph

NAME READY STATUS RESTARTS AGE
rook-ceph-operator-77d685b47f-jtghd 1/1 Running O 108s
rook-discover-2qbjz 1/1 Running 0 103s
rook-discover-2sfdz 1/1 Running O 104s
rook-discover-v4s2h 1/1 Running O 103s

Listing 22: Installing and validating Rook operator

To create the storage cluster the manifest cluster-test.yaml is used. This manifest creates an
OSD for each node in the cluster.

$ kubectl create -f cluster-test.yaml
$ kubectl get pods -n rook-ceph

NAME READY STATUS RESTARTS AGE
csi-cephfsplugin-568n6 2/2 Running 0 1im
csi-cephfsplugin-ldgst 2/2 Running 0 1im
csi-cephfsplugin-11vén 2/2 Running 0 5mb1s
csi-cephfsplugin-provisioner-55588874-6147b 5/5 Running 0 1im
csi-cephfsplugin-provisioner-55588874-rzpk8 5/5 Running 0 1im
csi-rbdplugin-7£fp64 2/2 Running 0 11im
csi-rbdplugin-8s878 2/2 Running 0 5m52s
csi-rbdplugin-provisioner-577dff4756-7tpf8 5/5 Running 0 1im
csi-rbdplugin-provisioner-577dff4756-sfjrm 5/5 Running 0 11im
csi-rbdplugin-swp6s 2/2 Running 0 1im
rook-ceph-exporter-final-master-86£5696ff4-rzrld 1/1 Running 0 88s
rook-ceph-exporter-final-worker1-578b59b6d5-wdf jk 1/1 Running 0 9m27s
rook-ceph-exporter-final-worker2-66488c4446-szt4b 1/1 Running 0 8m48s
rook-ceph-mgr-a-85db99cb8-51mt1 1/1 Running 0 10m
rook-ceph-mon-a-7758474dfb-2drsp 1/1 Running 0 12m
rook-ceph-operator-77d685b47f-wrb5jx 1/1 Running 0 18m
rook-ceph-osd-0-696c59645-2gsjc 1/1 Running 0 Im27s
rook-ceph-osd-1-7b95c6cd95-wtnkn 1/1 Running 0 8m49s
rook-ceph-osd-2-bdfdcd47c-zwfxk 1/1 Running 0 89s
rook-ceph-osd-prepare-final-master-t57dj 0/1 Completed O 47s
rook-ceph-osd-prepare-final-worker1-sv7k8 0/1 Completed O 39s
rook-ceph-osd-prepare-final-worker2-tcp4c 0/1 Completed O 32s
rook-discover-6nhnv 1/1 Running 0 18m
rook-discover-pw8j9 1/1 Running 1 (4m31s ago) 5mb2s
rook-discover-xpvlf 1/1 Running 0 18m

Listing 23: Installing and validating Rook cluster

To validate the functionality of the new storage cluster, the Rook toolbox is installed.
kubectl create -f toolbox.yaml

Listing 24: Setting up Rook toolbox

Using the command ceph status the current state of the storage cluster can be seen. Here it is
seen, that the three 1TB disks added to the nodes were added to a storage pool.

$ kubectl -n rook-ceph exec deploy/rook-ceph-tools -- ceph status
cluster:
id: cca3270b-ccf5-4820-917a-e3c9a97b583f
health: HEALTH_OK

services:
mon: 1 daemons, quorum a (age 13m)
mgr: a(active, since 10m)
osd: 3 osds: 3 up (since 2m), 3 in (since 4m)

data:
pools: 1 pools, 32 pgs
objects: 2 objects, 463 KiB
usage: 79 MiB used, 3.0 TiB / 3 TiB avail
pgs: 32 active+tclean

Listing 25: Validating Ceph cluster state

To use the storage in Kubernetes, a block storage class is added using the storageclass.yaml
manifest provided by Rook.

$ kubectl apply -f storageclass.yaml
cephblockpool.ceph.rook.io/replicapool created
storageclass.storage.k8s.io/rook-ceph-block created

Listing 26: Adding Rook storage class

22 CI

2.2.1 ArgoCD

To install ArgoCD, a new namespace is created and then the install.yaml is applied. The
install.yaml file was copied over from exercise four.

kubectl create namespace argocd
kubectl apply -n argocd -f install.yaml

Listing 27: Installing ArgoCD

This started multiple pods and services, with the argocd-server LoadBalancer being the access
to the ArgoCD web interface.

NAME TYPE PORT(S) AGE
argocd-applicationset-controller ClusterIP 7000/TCP,8080/TCP 2mbs
argocd-dex-server ClusterIP 5556/TCP,5557/TCP,5558/TCP 2mbs
argocd-metrics ClusterIP 8082/TCP 2més
argocd-notifications-controller-metrics ClusterIP 9001/TCP 2més
argocd-redis ClusterIP 6379/TCP 2m3s
argocd-repo-server ClusterIP 8081/TCP,8084/TCP 2m3s
argocd-server LoadBalancer 80:31846/TCP,443:30797/TCP 2m2s
argocd-server-metrics ClusterIP 8083/TCP 2mls

Listing 28: ArgoCD Services

The CLI tool is installed and the default admin credentials are extracted. Using them, one could

login to the web interface of ArgoCD. On there the default password was changed, as seen in

figure 1.

curl -sSL -o argocd-linux-amd64 https://github.com/argoproj/argo-cd/releases/latest/download/
argocd-linux-amd64

sudo install -m 555 argocd-linux-amd64 /usr/local/bin/argocd
rm argocd-linux-amd64

Listing 29: Installing ArgoCD CLI

argocd admin initial-password -n argocd
BRAK1hg2In3TIDzj

This password must be only used for first time login. We strongly recommend you update the
password using ~argocd account update-password’.

Listing 30: Getting ArgoCD Default Password

Update account password

Figure 1: Changing ArgoCD Password

To add the GitLab repository to ArgoCD, a new read only access token is generated in GitLab.
Using this access token, the final-project repository is added (listing 31). As seen in figure 3,
the repository is now shown in the web interface.

Active project access tokens @ 1 Add new token

Token name Scopes Created Last Used @ Expires Role Action

argocd read_api, read_repository, read_registry Nov 21, 2023 Never in 2 months Owner o

Figure 2: Creating GitLab Access Token

argocd repo add https://gitlab.internal.uia.no/ikt210-g-23h-skyinfrastruktur/LabGroup8/final-
project.git --username robinme --password glpat-ACCESSTOKEN

Listing 31: Adding GitLab Repository to ArgoCD

@ @ Repositories / Settin x | + v - o X
<« C @ O & https:/master.uia:30710/settings/repos i3 L € o0 @ =
Seitings | Repositories REPOSITORIES
|&| argo
< TYPE NAME REPOSITORY CONNECTION STATUS
Settings Q} gt hitps://gitlab.internal.uia.no/ikt210-g-23h-skyi. © Successful

Figure 3: Validating Connection of Repository

ArgoCD was then added as an app inside ArgoCD, which is shown in figure 4.

argocd app create argocd \

--repo https://gitlab.internal.uia.no/ikt210-g-23h-skyinfrastruktur/LabGroup8/final-project.git
\

--path ci/argocd \

--dest-server https://kubernetes.default.svc \

--dest-namespace argocd

--self-heal \

--sync-policy automated \

--sync-retry-limit 5

argocd app set argocd --auto-prune

Listing 32: Creating ArgoCD app inside ArgoCD

10

Q} argocd

Project: default

Labels:

Status: W Healthy @ Synced

Repository: https://gitlab.internal.uia.no/ikt210-g-23h-skyinfrastruktur/LabGroup8/final-project.qgit
Target Revision: HEAD

Path: argocd

Destination: in-cluster

Namespace: argocd

Created At: 11/21/2023 12:28:10 (7 minutes ago)
Last Sync: 11/21/2023 12:30:42 (5 minutes ago)

Figure 4: ArgoCD app on ArgoCD management site

2.2.2 ArgoCD Image Update

ArgoCD Image Update was installed using the guide on their official website [3]. Applying the
install.yaml started an additional pod in the argocd namespace (listing 34).

kubectl apply -n argocd -f install.yaml
Listing 33: Installing ArgoCD Image Updater

$ kubectl get pods -n argocd

NAME READY STATUS RESTARTS AGE

argocd-application-controller-0 1/1 Running O 140m
argocd-applicationset-controller-568754c579-j87s6 1/1 Running 0O 140m
argocd-dex-server-7658dcdf77-sfrjc 1/1 Running O 140m
argocd-image-updater-88454679d-vhq7r 1/1 Running O 34s

argocd-notifications-controller-5548b96954-x6fbp 1/1 Running 0 140m
argocd-redis-6976fc7dfc-7wpvb 1/1 Running O 140m
argocd-repo-server-7594£8849c-kkhx9 1/1 Running O 140m
argocd-server-58cc545d87-x4rcf 1/1 Running 0 140m

Listing 34: Checking ArgoCD pods

To validate the functionality of Image Updater the Nginx image was tested.

$ kubectl exec --stdin --tty -n argocd argocd-image-updater-88454679d-vhq7r -- argocd-image-
updater test nginx

DEBU[0000] Creating in-cluster Kubernetes client

INFO[0000] retrieving information about image image_alias= image_name=nginx registry_url=

INFO[0000] Fetching available tags and metadata from registry application=test image_alias=
image_name=nginx registry_url=

DEBU[0000] Using canonical image name 'library/nginx' for image 'nginx' application=test
image_alias= image_name=nginx registry_url=

INFO[0001] Found 560 tags in registry application=test image_alias= image_name=nginx
registry_url=

INFO[0001] latest image according to constraint is nginx:1.25.3 application=test image_alias=
image_name=nginx registry_url=

Listing 35: Testing Image Update

11

2.2.3 Sealed Secrets

Sealed Secrets was installed using the guide from the official Github repository [4]. Installing it
added a new pod in the kube-system namespace (listing 37).

kubectl apply -f controller.yaml
Listing 36: Installing Sealed Secrets

$ kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE

coredns-5dd5756b68-4v5x4 1/1 Running O 17s

coredns-5dd5756b68-6gdbp 1/1 Running O 61m

etcd-final-master 1/1 Running O 142m
kube-apiserver-final-master 1/1 Running O 142m
kube-controller-manager-final-master 1/1 Running O 142m
kube-proxy-29xfj 1/1 Running O 142m
kube-proxy-5m4bb 1/1 Running O 136m
kube-proxy-wkbhq 1/1 Running O 136m
kube-scheduler-final-master 1/1 Running O 142m
sealed-secrets-controller-7£5c556578-h8k69 1/1 Running O 116s

Listing 37: Checking Sealed Secrets pod

The kubeseal CLI was installed from their repository and to test the functionality a new test

secret was created in the manifest test-secret.yaml. This secret was then sealed and the sealed

secret was created. Listing 39 shows the process.

KUBESEAL_VERSION='0.24.4' # Set this to, for example, KUBESEAL_VERSION='0.23.0'

wget "https://github.com/bitnami-labs/sealed-secrets/releases/download/v${KUBESEAL_VERSION:?}/
kubeseal-${KUBESEAL_VERSION:?}-linux-amd64.tar.gz"

tar -xvzf kubeseal-${KUBESEAL_VERSION:?}-linux-amd64.tar.gz kubeseal
sudo install -m 755 kubeseal /usr/local/bin/kubeseal

Listing 38: Installing kubeseal CLI

$ echo -n "OhThisIsSoSecretYouCouldNotBelieveYourEyes" | base64
T2hUaG1zSXNTb1N1Y3J1dF1vdUNvdWxkTmO0QmVsaWV2ZV1vdXJFeWVz

kubeseal -f test-secret.yaml -w test-sealed-secret.yaml
kubectl create -f test-sealed-secret.yaml

$ kubectl get secret mysecret
NAME TYPE DATA AGE
mysecret Opaque 1 19s

$ kubectl get secret mysecret -o jsonpath='{.datal}'
{"password": "T2hUaGlzSXNTb1N1Y3J1dF1lvdUNvdWxkTm90QmVsaWV2ZV1lvdXJFeWVz"}

$ echo "T2hUaGlzSXNTb1N1Y3J1dF1lvdUNvdWxkTm90QmVsaWV2ZV1vdXJFeWVz" | base64 --decode
OhThisIsSoSecretYouCouldNotBelieveYourEyes

Listing 39: Testing Sealed Secrets

12

2.3 Monitoring

The monitoring was set up using Prometheus Operator and the getting started guide available
on the Prometheus Operator website [5]. The operator manifest was downloaded from Github
and installed.

LATEST=$(curl -s https://api.github.com/repos/prometheus-operator/prometheus-operator/releases/
latest | jq -cr .tag_name)

wget https://github.com/prometheus-operator/prometheus-operator/releases/download/${LATEST}/
bundle.yaml

kubectl create -f .

Listing 40: Installation of Prometheus Operator

This started the prometheus-operator pod as shown below.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
prometheus-operator-669dd4ddbf-hh479 1/1 Running O 25h

Listing 41: Prometheus Operator pod running

The getting started guide also sets up an example application to validate the functionality of
Prometheus. This application has been deployed in the mon-example namespace using Kus-
tomize. The Deployment manifest example-app.yaml is shown in listing 43. It starts three
replicas of a pod, which expose metrics on port 8080. The metrics are collected using a Pod-
Monitor resource.

apiVersion: apps/v1
kind: Deployment
metadata:

name: example-app
spec:

replicas: 3

template:
metadata:
labels:
app: example-app
spec:
containers:
- name: example-app

image: fabxc/instrumented_app
ports:
- name: web
containerPort: 8080
apiVersion: monitoring.coreos.com/vl
kind: PodMonitor
metadata:
name: example-app
spec:
selector:
matchLabels:
app: example-app
podMetricsEndpoints:
- port: web

Listing 42: Setup of example application to test PodMonitor

13

2.3.1 Prometheus

For Prometheus to be able to access the metrics, a ClusterRole first has to be created, which
allows Prometheus to get different resources in the cluster. The ClusterRole and Cluster-
RoleBinding are configured in the serviceaccount.yaml file and were applied beforehand. Then
a Prometheus instance was started using the Prometheus resource type. This is done in the
manifest prometheus.yaml. Prometheus was configured to gather metrics from all namespaces
with the serviceMonitorNamespaceSelector, podMonitorNamespaceSelector and.probeNamespaceSelector
keys. A NodePort was added, to be able to access the web interface of Prometheus.

apiVersion: monitoring.coreos.com/vl

kind: Prometheus

metadata:
name: prometheus

spec:
serviceAccountName: prometheus
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {3}
podMonitorSelector: {}
podMonitorNamespaceSelector: {3}
probeNamespaceSelector: {}
probeSelector: {}

apiVersion: vi
kind: Service
metadata:
name: prometheus-external
spec:
type: NodePort
ports:
- name: web
nodePort: 30900
port: 9090
protocol: TCP
targetPort: web
selector:
prometheus: prometheus

Listing 43: Setup of example application to test PodMonitor

After deploying the manifest, it is possible to access the Prometheus web interface and see the
collected metrics from the example application.

@ 4 Prometheus Time Se x | + v - O X

< C @ O R master.uia:30900/graph?g0.expr=up{container%3D"exar ¥ Y € 9 0O d) =

g Prometheus Alert

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

Q up{container="example-app"} = @

Table Graph

Evaluation time

ple-app", endpoint="web", i "10.244.0.30:8080", job=" Pps " ple”, pod=" ple-app-57bafsshct-8bwpd”) 1

ple-app", endpoint="web", i "10.244.1.44:8080", job=" pp", Y ple”, pod="example-app-57b4f8bcf-gs6tt} 1

“example-app", endpoint="web", i "10.244.2.41:8080", job=" pp", Y ple’, pod="example-app-57bafssbcf-crehx’} 1

Figure 5: Accessing Prometheus and querying example-app ”up” metrics

14

2.3.2 Node Exporter

To monitor the cluster nodes, Node Exporter is used, which was set up by following a guide
from Devopscube [6]. The container image prom/node-eporter is used and arguments are set, for
what to monitor. A DaemonSet instead of a Deployment is used to make sure, that each node
has exactly one Node Exporter instance running. The host paths / and /sys are mounted into
the pods as read only. The ServiceMonitor connects to a ClusterIP Service, which then gets
picked up by Prometheus. The whole deployment is contained in the node-exporter.yaml file.

apiVersion: apps/vl
kind: DaemonSet
metadata:

name: node-exporter
spec:

selector:

matchLabels:
app: node-exporter

spec:
containers:
- args:
- —-path.sysfs=/host/sys
- —-path.rootfs=/host/root
- --no-collector.wifi
- --no-collector.hwmon
- —-collector.filesystem.ignored-mount-points="/(dev|proc|sys|var/lib/docker/.+|var/lib/
kubelet/pods/.+) ($1/)
- —-collector.netclass.ignored-devices="(veth.*)$
name: node-exporter
image: prom/node-exporter
ports:
- containerPort: 9100
protocol: TCP
resources:
limits:

volumeMounts:

- mountPath: /host/sys
mountPropagation: HostToContainer
name: sys
readOnly: true

- mountPath: /host/root
mountPropagation: HostToContainer
name: root
readOnly: true

volumes:
- hostPath:
path: /sys
name: sys
- hostPath:
path: /
name: root

Listing 44: Node Exporter DaemonSet configuration

15

apiVersion: vl
kind: Service

metadata:
name: node-exporter-svc
labels:
app: node-exporter
spec:

type: ClusterIP
selector:
app: node-exporter

ports:
- name: metrics
port: 9100

targetPort: 9100
apiVersion: monitoring.coreos.com/vl
kind: ServiceMonitor
metadata:

name: nodes
spec:
selector:
matchLabels:
app: node-exporter
endpoints:
- port: metrics

Listing 45: Node Exporter ServiceMonitor configuration

To validate, that a pod is started on each node of the cluster, the command in listing 46 was
executed. On the Prometheus web interface the three nodes are now visible under ”Status” —
"Targets” as seen in figure 6.

$ kubectl get pods -n mon -o wide | grep node-exporter

node-exporter-9f8gn 1/1 Running 10.244.0.43 final-master
node-exporter-bv78j 1/1 Running 10.244.1.47 final-workerl
node-exporter-sq4b7 1/1 Running 10.244.2.59 final-worker2

Listing 46: Node Exporter Pods

File Edit View History Bookmarks Tools Help

@ | * Prometheus Time S¢ x | + ~

< C o O 8 master.uia:30900/targets?search= bAd L € © 0O a =

9 Prometheus Alerts Grap

serviceMonitor/mon/nodes/0 (3/3 up) [

Scrape
Endpoint State Labels Last Scrape Duration Error

http://10.244.1.47:9100/metrics () 15.930s ago 47.765ms
endpoint="metrics"
instance="10.244.1.47:9100"
job="node-exporter-svc"
namespace="mon"
Ppod="node-exporter-bv7gj"

service="node-exporter-svc”

http://10.244.2.59:9100/metrics @ container="node-exporter" 5.653sago 50.804ms
endpoint="metrics"
instance="10.244.2.59:9100"
job="node-exporter-svc"
namespace="mon"
pod="node-exporter-sqab7"

service="node-exporter-svc

http://10.244.0.43:9100/metrics @ container="node-exporter" 28.400s ago 39.744ms

endpoint="metrics"

instance 0.43:9100"

-2="10.244.0.43:9100

job="node-exporter-svc™

namespace="mon"

pod="node-exporter-9fggn"

Figure 6: Node Exporter targets in Prometheus

16

2.3.3 Grafana

Grafana was set up using the grafana/grafana image. A PVC for all persistent data has been
created and mounted on /var/lib/grafana path and a ConfigMap describing the datasources has
been added as well (listing 48). To access the web interface a NodePort to port 30000 has been
added. For Grafana to be able to connect to Prometheus a new ClusterIP Service has been
added (listing 49).

apiVersion: apps/v1
kind: Deployment
metadata:
name: grafana
spec:
selector:
matchLabels:
app: grafana
spec:

containers:
- name: grafana
image: grafana/grafana
resources:
limits:
memory: "1Gi"
cpu: "500m"
ports:
- containerPort: 3000
volumeMounts:
- name: grafana-storage
mountPath: /var/lib/grafana
- name: grafana-config
mountPath: /etc/grafana/provisioning/datasources/datasource.yaml
subPath: datasource.yaml
volumes:
- name: grafana-storage
persistentVolumeClaim:
claimName: grafana-storage
- name: grafana-config
configMap:
name: grafana-config
apiVersion: vi
kind: Service

metadata:
name: grafana-http
spec:
type: NodePort
selector:
app: grafana
ports:
- port: 3000

nodePort: 30000
Listing 47: Grafana Deployment

kind: ConfigMap
apiVersion: vl
metadata:

name: grafana-config
data:

datasource.yaml: |

17

apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: server
url: http://prometheus-internal:9090
version: 1
editable: true

Listing 48: Grafana datasource.yaml

apiVersion: vl
kind: Service
metadata:
name: prometheus-internal
spec:
type: ClusterIP
ports:
- name: web
targetPort: web
port: 9090
protocol: TCP
selector:
prometheus: prometheus

Listing 49: Prometheus internal Service

After deployment, Grafana could be accessed in a browser using the default credentials admin:
admin, which were immediately changed. Under ”Dashboards” — ”New” — ”"New Dashboard”
— 7Import Dashboard” a Node Exporter dashboard, found on the Grafana website [7] was
added. Prometheus was selected as the datasource and metrics were immediatly displayed, as
seen in figure 7.

@ 5 Node Exporter Full - x | + v - o X
<« C @ O & master.uia:30000/d/rYdddIPWk/node-exporter-full? bad Y € 9 0) =

= Home ds > Exporter Full ¥ o5 i+ Add v

Prometheus v ob node-exporter-svc v Host 10.244.0.20:9100 v & GitHub & Grafana
+ Quick CPU / Mem / Disk
CPUBus G Sys Loa G Sys Loa ® 0] e RootFS G G Uptime ©
18.2 hour
R(G : 6} N6}
248 GiB 316i8 ():]
v Basic CPU / Mem / Net / Disk

CPUBasic @ Memory Basic &

100%

Disk Space Used Basic

Figure 7: Node Exporter metrics in Grafana

18

2.3.4 Blackbox Exporter

The deployment of Blackbox Exporter is based on the example manifests found on the kube-
prometheus repository [8]. Since the manifests found there are rather large, it was shortened
to only the necessary parts: the Deployment, Service and ConfigMap, with the ConfigMap
being copied directly, since it provides a good baseline for different blackbox probes. Blackbox
Exporter itself is a pod with a ClusterIP Service running on port 9115.

apiVersion: apps/vl
kind: Deployment
metadata:

name: blackbox-exporter
spec:

selector:

spec:
containers:
- name: blackbox-exporter
image: quay.io/prometheus/blackbox-exporter:latest
ports:
- containerPort: 9115
name: http
apiVersion: vl
kind: Service

metadata:
name: blackbox-exporter
spec:
selector:
app: blackbox-exporter
ports:
- name: probe
port: 9115

targetPort: http
Listing 50: Blackbox Exporter Deployment

To test the deployment, the Probe resource type from Prometheus Operator could be used.
An example from the Prometheus Operators documentation [9] was deployed, which uses the
Blackbox Exporter to probe the sites http://example.com and https://example.com every 60 sec-
onds (listing 51). The result of this could be seen on the Prometheus web interface (figure 8).
Additionally, a new dashboard was added [10] to Grafana, which displays the Probes metrics
(figure 9).

kind: Probe
apiVersion: monitoring.coreos.com/vl
metadata:
name: example-com-website
spec:
interval: 60s
module: http_2xx
prober:
url: blackbox-exporter:9115
targets:
staticConfig:
static:
- http://example.com
- https://example.com

Listing 51: Blackbox Exporter Probe

19

@ % Prometheus Time S¢ x | +

<« C @ O 8 master.uia:30900/graph?g0.expr=up{instance%3D~"htty ¥ L € © 0O a =
9 Prometheus Alerts Graph Status~ Help

Use local time Enable query history @ Enable autocomplete @ Enable highlighting @ Enable linter

Q up{instance=~"http://example.com|https://example.com"} = 6

Table Graph

hitp:/ig com", job=" bsite”, "mon’}

", job= bsite’, “mon’} 1

Figure 8: Blackbox Exporter metrics in Prometheus

@ | 5 Prometheus Blackbc x = +

<« C @ O R’ master.uia:30000/d/xtkCtBkiz/prometheus-blackbox-ex g L € © 0 8 =

Home > Dashl

10s v target

obal Probe Duration

http://example.com status
Status HTTP Duration Probe Duration

uP 150 ms.

T I

HTTP Version 14:30
110 - p tls
SSL Expiry Average Probe Duration Average DNS Lookup

225ms 12.3ms

Figure 9: Blackbox Exporter metrics in Grafana

2.3.5 Alert Manager

Prometheus Operator provides Alertmanager, AltermanagerConfig and PrometheusRule types,
which allow the configuration of alerting. A new Alertmanager with three replicas was created,
which uses a webhook as a configuration (listing 52). A NodePort Service was added to see the
AlertManager web interface (listing 52). To test the functionality of the AlertManager a new
PrometheusRule was added, which triggers an example alert (listing 53). The Alertmanager
and PrometheusRule were appended to the Prometheus resource (listing 54).

apiVersion: monitoring.coreos.com/vl
kind: Alertmanager
metadata:
name: alertmanager
spec:
replicas: 3
alertmanagerConfigSelector:
matchLabels:
alertmanagerConfig: webhook

apiVersion: monitoring.coreos.com/vialphal

20

kind: AlertmanagerConfig

metadata:
name: alertmanager-config
labels:
alertmanagerConfig: webhook
spec:
route:
receiver: 'webhook'
receivers:
- name: 'webhook'
webhookConfigs:

- url: 'https://webhook.site/1db406d3-7d33-467d-9bel1-40dad6c8402b'
apiVersion: vi
kind: Service
metadata:
name: alertmanager
spec:
type: NodePort
ports:
- name: web
nodePort: 30903
port: 9093
protocol: TCP
targetPort: web
selector:
alertmanager: alertmanager

Listing 52: Alertmanager and AlertmanagerConfig setup

apiVersion: monitoring.coreos.com/vl
kind: PrometheusRule
metadata:
creationTimestamp: null
labels:
role: alert-rules
name: prometheus-example-rules
spec:
groups:
- name: ./example.rules
rules:
- alert: ExampleAlert
expr: vector(1l)

Listing 53: Example alert PrometheusRule

apiVersion: monitoring.coreos.com/vl
kind: Prometheus
metadata:
name: prometheus
spec:

alerting:
alertmanagers:

- namespace: mon
name: alertmanager
port: web

ruleSelector:
matchLabels:
role: alert-rules

Listing 54: Adding alerting to Prometheus resource

21

The Alert Manager instances are now shown on the Prometheus web interface under ”Status”

— "Runtime & Build Information”. The triggered example alert is shown in Prometheus as well
as on the Alert Manager web interface.

@ 4 Prometheus Time Se x = +

<« C @ O 8 master.uia:30900/status IAd L € 9 0O il

9 Prometheus Alerts Grap

GoVersion gol.21.3

Alertmanagers

Endpoint
http://10.244.0.23:9093/api/v2/alerts

http://10.244.1.37:9093/api/v2/alerts

Figure 10: Alert Managers in Prometheus

@ 4 Prometheus Time S¢ x | + v - 0o X
<« @ @ O R master.uia:30900/alerts?search= g Y € © 0 H o=
9 Prometheus A
O Z=TH0) @ (Pending () Q | Filter by name or labels Show annotations

lefiles-0/mon-prometheus-example-rules-439d846e-5766-4172-9ead-
ebf887bcf419.yaml > ./example.rules
v ExampleAlert (1 active)
name: ExampleAlert
expr: vector(1)
Labels State Active Since Value
[FrinG | 2023-11-25T10:55:21.8211167287 1

@ 4 Alertmanager x |+ v - 0o X

<« Cc @ O & master.uia:30903/#/alerts w L ¢ 90 a =

Alertmanager Alerts Silences Status Settings Help

Filter Group Receiver: All Silenced Inhibited

|

Custom matcher, e.g. env="production"

Not grouped 1 alert

2023-11-25T10:55:21.821Z

alertname="ExampleAlert" prometheus="mon/prometheus"

Figure 11: Example alert shown in both Prometheus and Alert Manager

22

2.3.6 Thanos

Since Thanos contains multiple components and the task did not specify what to install, the
Query system was configured. For Thanos Query to make sense, the Prometheus resource was
extended to be higly available with two replicas. On the resource the Thanos sidecar system
was appended (listing 55).

apiVersion: monitoring.coreos.com/v1

kind: Prometheus

metadata:

name: prometheus
spec:

replicas: 2
thanos:
image: quay.io/thanos/thanos:v0.32.5
objectStorageConfig:
key: thanos.yaml
name: thanos-objstore-config

Listing 55: Prometheus Thanos sidecar and replicas

To store metrics via Thanos a new object bucket was created using Rook (listing 56). The
connection details of the bucket were exported and added to a configuration file called thanos-
config.yaml (listing 57). These configuration were then added to a secret and sealed using
kubeseal (listing 58). On the Prometheus resource, the objectStorageConfig key, configures the
sidecar to store data in the newly created bucket.
apiVersion: objectbucket.io/vlalphal
kind: ObjectBucketClaim
metadata:

name: thanos-store
spec:

generateBucketName: thanos-store

storageClassName: rook-ceph-bucket

Listing 56: Ceph bucket for Thanos object storage

type: s3

config:
bucket: thanos-store-31d15£83-877b-4d6c-af37-bd2473ae68d7
endpoint: rook-ceph-rgw-ceph-object.rook-ceph.svc
access_key: DTUXWOD6CM7C7QPK5MWU
secret_key: H8GcbyCzc7I33mfAZoLCr5ixkkCtAkfSzUaWAVZ6

Listing 57: Connection details in thanos-config.yaml

kubectl -n mon create secret generic thanos-objstore-config --from-file=thanos.yaml=thanos-
config.yaml

kubectl get secret -n mon thanos-objstore-config --output=yaml > thanos-objstore-config.yaml

kubeseal -f thanos-objstore-config.yaml -w sealed-thanos-objstore-config.yaml

Listing 58: Sealing bucket connection details

The configuration of the querier is based on the quick start guide from the Thanos website [11].
For the Deployment, the quay.io/thanos/thanos:v0.32.5 image with the query argument is used
(listing 59). Thanos Query has two Services, one for internal network acccess to connect to the
Prometheus instances and a NodePort for accessing the Thanos web interface (listing 60).

23

apiVersion: apps/vl
kind: Deployment
metadata:

name: thanos-querier
spec:

selector:

matchLabels:
app: thanos-querier

spec:
containers:
- name: thanos-querier
image: quay.io/thanos/thanos:v0.32.5
args:
- query
- —-log.level=debug
- --query.replica-label=prometheus_replica
- --store=dnssrv+_grpc._tcp.thanos-sidecar.mon.svc.cluster.local

ports:

- containerPort: 10902
name: http

Listing 59: Thanos Query Deployment

apiVersion: vl
kind: Service

metadata:
name: thanos-querier
spec:
ports:
- name: http
port: 10902
targetPort: http
selector:

app: thanos—querier
apiVersion: vl
kind: Service

metadata:
name: thanos-querier-external
spec:
type: NodePort
ports:
- name: http
port: 10902

nodePort: 30902

targetPort: http
selector:

app: thanos-querier

Listing 60: Thanos Query Services

After deploying Thanos, the redundant Prometheus instances were visible on the Thanos web
interface and metrics could be viewed.

24

File Edit View History Bookmarks Tools Help

@ | [J Thanos | Highly avai x | + v

<« C @ O ® master.uia:30902/stores w L € &0 § =

Thanos - Query Graph St Status~ Help

Sidecar

Min Max Last

Time Time Successful Last
Endpoint Status Announced LabelSets (Uutc) (UTC) Health Check Message
10.244.0.33:10901 m - - 914.000ms ago

prometheus="mon/prometheus"
prometheus_replica="prometheus-prometheus-0"

10.244.2.52:10901 ({3 - - 916.000ms ago

prometheus="monl/prometheus”

prometheus_replica="prometheus-prometheus-1"

Figure 12: Thanos Query web interface displaying redundant Prometheus instances

2.3.7 Overview of deployed monitoring stack

$ kubectl get pods -n mon

NAME READY STATUS

alertmanager-alertmanager-0 2/2 Running
alertmanager-alertmanager-1 2/2 Running
alertmanager-alertmanager-2 2/2 Running
blackbox-exporter-75b466cbb5-kdx2w 1/1 Running
grafana-894b6898d-skrqq 1/1 Running
node-exporter-9£8gn 1/1 Running
node-exporter-bv78j 1/1 Running
node-exporter-sq4b7 1/1 Running
prometheus-prometheus-0 3/3 Running
prometheus-prometheus-1 3/3 Running
thanos-querier-67b9bc94db-5gbdl 1/1 Running

$ kubectl get svc -n mon

NAME TYPE PORT(S)
alertmanager NodePort 9093:30903/TCP
alertmanager-operated ClusterIP 9093/TCP,9094/TCP,9094/UDP
blackbox-exporter ClusterIP 9115/TCP
grafana-http NodePort 3000:30000/TCP
node-exporter-svc ClusterIP 9100/TCP
prometheus-external NodePort 9090:30900/TCP
prometheus-internal ClusterIP 9090/TCP
prometheus-operated ClusterIP 9090/TCP, 10901 /TCP
thanos-querier ClusterIP 10902/TCP
thanos-querier-external NodePort 10902:30902/TCP
thanos-sidecar ClusterIP 10901/TCP
thanos-storer ClusterIP 10901/TCP,10902/TCP

Listing 61: Deployed Pods and Services in mon namespace

2.4 Apps

2.4.1 Bitwarden

Since Bitwarden does not have documentation for a direct Kubernetes deployment without Helm,
the manifests had to be built from ground up. As a reference, the guide for installation on Linux
was used [12]. Bitwarden uses a script to generate needed configuration files and certificates.
The Installation process was run on a local virtual machine to generate the needed files. The

installation ID and key were generated beforehand on the Bitwarden website.

$./bitwarden.sh install
[A G R R SN I I

Lo NE NN/ 2N N
0 2 U AN A0/Z5 G I (G I v B O
POV Dy N I N/ V2 VR) O I VU D) I
Open source password management solutions

Copyright 2015-2023, 8bit Solutions LLC
https://bitwarden.com, https://github.com/bitwarden

bitwarden.sh version 2023.10.2
Docker version 24.0.7, build afdd53b
Docker Compose version v2.21.0

(1) Enter the domain name for your Bitwarden instance (ex. bitwarden.example.com): localhost

(1) Enter the database name for your Bitwarden instance (ex. vault): vault

(1) Enter your installation id (get at https://bitwarden.com/host): 55£f73d24-0c2b-41b5-8dd0-

b0c2010bebe3
(1) Enter your installation key: sCImn5KzOnPmqOeDtyvp
(!) Enter your region (US/EU) [US]: EU
(!) Do you have a SSL certificate to use? (y/N): n
(1) Do you want to generate a self-signed SSL certificate? (y/N): y

Listing 62: Generating Bitwarden Config

Figure 14 show the generated files, which were then used in the configuration of the mani-
fests. The docker-compose.yaml used by Bitwarden contains eleven different containers, each
with mounted volumens and environment variables set. To simplify the process of creating the
deployment manifests, all PersistentStorageClaims were created in one separate manifest called
storage.yaml. Each PVC is set to access mode ReadWriteOnce, has 5Gi of storage and uses the

rook-ceph-block storage class.

apiVersion: vl
kind: PersistentVolumeClaim

metadata:
name: bitwarden-core
spec:
resources:
requests:
storage: b5Gi
accessModes:
- ReadWriteOnce

storageClassName: rook-ceph-block

Listing 63: Example of PVC in storage.yaml

26

bitwarden@bitwarden: $ tree bwdata

config.yml

docker-compose.yml
global.env
mssql.env
global.override.env
mssql.override.env
uid.env

L— identity.pfx

L— default.conf

L— run.sh

L
L

t:: certificate.crt
private.key

L— app-id.json

11 directories, 13 files

Figure 13: Generated files after running Bitwarden installation script

All environment variables found in the bwdata directory were added to one manifest called
env.yaml and then sealed using kubeseal. The env.yaml file contains secrets, so this file would
normally not be pushed to the repository, but is in this case for educational purposes.

kubeseal -f env.yaml -w sealed-env.yaml

Listing 64: Sealing of env.yaml

Deployments were configured based on the docker-compose.yaml, with the identity and nginx
deployments having additional Init-Containers, which copy data from the bwdata directory into
a persistent volume. Listing 65 shows the Dockerfile of the Init-Container used. Environment
variables are added using the envFrom: secretRef: notation. Listing 66 shows the identity deploy-
ment in the original docker-compose.yaml file and listing 67 shows the translated deployment in
a Kubernetes manifest. Some information has been removed for a better overview. Since mul-
tiple deployments mount the same volumes and all PVCs have been created with ReadWriteOnce,
the Bitwarden deployment are fixed to one k8s node by using nodeName: final-workerl.

FROM busybox
RUN mkdir /bwdata

COPY . /bwdata

Listing 65: Dockerfile of Init-Container to copy bwdata into persistent volume

27

identity:
image: bitwarden/identity:2023.10.2
container_name: bitwarden-identity
restart: always
volumes:
- ../identity:/etc/bitwarden/identity
- ../core:/etc/bitwarden/core
- ../ca-certificates:/etc/bitwarden/ca-certificates
- ../logs/identity:/etc/bitwarden/logs
env_file:
- global.env
- ../env/uid.env
- ../env/global.override.env
networks:
- default
- public

Listing 66: Identity deployment in docker-compose.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: bitwarden-identity
spec:

spec:
nodeName: final-workerl
initContainers:
- name: bitwarden-identity-init
image: registry.internal.uia.no/ikt210-g-23h-skyinfrastruktur/labgroup8/final-project:

init
volumeMounts:
- name: bitwarden-identity
mountPath: /data
command: ["/bin/sh","-c"]
args: ["mv /bwdata/identity/* /data/"]
containers:

- name: bitwarden-identity
image: bitwarden/identity:2023.10.2

envFrom:

- secretRef:
name: global-env
- secretRef:
name: uid-env
- secretRef:
name: global-override-env
ports:

- containerPort: 5000
name: web
volumeMounts:
- name: bitwarden-core
mountPath: /etc/bitwarden/core
volumes:
- name: bitwarden-core

persistentVolumeClaim:
claimName: bitwarden-core

imagePullSecrets:
- name: registry-pull

Listing 67: Translated Kubernetes Identity deployment Init-Container

28

All manifests are added to a kustomization.yaml which sets the bitwarden namespace. The
following pods and services were deployed:

$ kubectl get pods -n bitwarden

NAME READY STATUS RESTARTS AGE

bitwarden-admin-5f97bd4558-bs8f6 1/1 Running O Tm21s
bitwarden-api-7cfbdd8ddc-wm9bd 1/1 Running O Tm22s
bitwarden-attachments-79bbd9c564-fgj4j 1/1 Running O Tm22s
bitwarden-events-56£87fd469-sjtz4 1/1 Running O Tm21s
bitwarden-icons-5f8£95546-gdwv4 1/1 Running O Tm21s
bitwarden-identity-84bf5b546f-6bssb 1/1 Running O Tm21s
bitwarden-mssql-69d6b685b6-858qw 1/1 Running O Tm21s
bitwarden-nginx-79£8cdb899-s8znw 1/1 Running O Tm21s
bitwarden-notifications-7c88dfb9cb-24zns 1/1 Running O Tm21s
bitwarden-sso-7466f£8944-fxslv 1/1 Running O Tm21s
bitwarden-web-749f4c9d57-4fdsm 1/1 Running O Tm21s

$ kubectl get svc -n bitwarden

NAME TYPE PORT(S) AGE

admin ClusterIP 5000/TCP Tm22s
api ClusterIP 5000/TCP Tm21s
attachments ClusterIP 5000/TCP Tm21s
events ClusterIP 5000/TCP Tm20s
icons ClusterIP 5000/TCP Tm20s
identity ClusterIP 5000/TCP Tm19s
mssql ClusterIP 1433/TCP 7m19s
nginx-http NodePort 8080:30080/TCP 7m18s
nginx-https NodePort 8443:30443/TCP 7m18s
notifications ClusterIP 5000/TCP Tm18s
sS0 ClusterIP 5000/TCP Tml7s
web ClusterIP 5000/TCP Tmil7s

Listing 68: Deployed Bitwarden pods and services

Bitwarden could then be accessed over the Nginx reverse proxy over the NodePort 30443.

File Edit View History Bookmarks Tools Help _ oo«
@ () Vvaults | Bitwarden V' x | + o
<« C @ O @ https://master.uia:30443/#/vault & L ¢ o0 o =

U Vaults Send Tools Reports

FILTERS o Allvaults = VERIFY EMAIL

O Al Name Owner H Verify your account's email
address to unlock access to
Test all features.

~ All vaults -
(@]

& Myvault admin : .

\ Allitems
Favorites
Login

Card
Identity
Secure note

gB 0o

\/ Folders
B3 No folder

T Trash

Figure 14: Accessing the Bitwarden web interface

29

2.4.2 Cryptpad

The Cryptpad Deployment was based on the docker-compose.yaml file available in the Cryptpad
GitHub repository [13]. The compose file sets two environment variables specifying the main
domain and a sandbox domain and one specifying the path to the config file. Additionally, some
volumes are mounted for persistence and some ports are exposed. Since the cluster does not
have a clean way to be reached from the internet and no access to an UiA internal DNS server
is given, the domain names were specified on the accessing machine locally in the /etc/hosts file
as shown in listing 69.

10.225.150.174 g8-cryptpad.uia
10.225.150.174 g8sb-cryptpad.uia

Listing 69: Setting domain names for Cryptpad access in local hosts file

For the domain names, a self-signed certificate was created using OpenSSL. It is important, that
both domain names have the same certificate, which is why g8sb-cryptpad.uia was specified in
the subjectAltName.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout key -out cert \
-subj "/C=CH/ST=Some/L=Place/0=UIA/0U=IT/CN=g8-cryptpad.uia" \
-addext "subjectAltName=DNS:g8sb-cryptpad.uia"

Listing 70: Creating certificates for the Cryptpad domains

Additionally Diffie-Hellman parameters are generated for the session key negotiation.
openssl dhparam -out dhparam.pem 4096
Listing 71: Generating Diffie-Hellman parametes

In the manifest file cryptpad.yaml, four PersistentVolumeClaims using the rook-ceph-block stor-
age class (see example in listing 72) and a ClusterIP Service exposing the three ports used by
the Cryptpad container image are created (see listing 73).

apiVersion: vi
kind: PersistentVolumeClaim

metadata:
name: cryptpad-datastore
spec:
resources:
requests:
storage: 1Gi
accessModes:
- ReadWriteOnce

storageClassName: rook-ceph-block

Listing 72: Cryptpad PVC example

30

apiVersion: vl
kind: Service
metadata:

name: cryptpad-http

spec:

type: ClusterIP

selector:
app: cryptpad

ports:

- port: 3000
targetPort: 3000
name: httpunsafe

- port: 3001
targetPort: 3001
name: httpsafe

- port: 3003
targetPort: 3003
name: websocket

Listing 73: Cryptpad Service configuration

The Cryptpad Deployment sets the three necessary environment variables, defines the three
container ports 3000, 3001 and 3003 and mounts the four volumes. A ConfigMap mount for the
config.js file was created using the configMapGenerator in kustomization.yaml (listing 76). This
volume was however, not mounted in the end, since the default configurations are sufficient. It
would allow to modify the configurations in the future though. The fsGroup: 4001 key had to be
set for Cryptpad to be able to create files in the volumes.

apiVersion: apps/vl
kind: Deployment
metadata:

name: cryptpad
spec:

spec:
securityContext:
fsGroup: 4001
containers:
- name: cryptpad
image: cryptpad/cryptpad:version-5.5.0
imagePullPolicy: Always

env:
- name: CPAD_CONF
value: /cryptpad/config/config.js
- name: CPAD_MAIN_DOMAIN
value: "https://g8-cryptpad.uia:30180"
- name: CPAD_SANDBOX_DOMAIN
value: "https://g8sb-cryptpad.uia:30180"
ports:
- containerPort: 3000
- containerPort: 3001
- containerPort: 3003
protocol: TCP
- name: cryptpad-blob
mountPath: /cryptpad/blob

volumes:
- name: cryptpad-config
configMap:
name: cryptpad-config
- name: cryptpad-blob
persistentVolumeClaim:

31

claimName: cryptpad-blob

Listing 74: Cryptpad Deployment

Cryptpad is run behind a Nginx reverse proxy, which uses the example configuration found on the
Cryptpad repository [14], with some slight modifications. The ssl_trusted_certificate section
has been removed, since we don’t verify the chain of trust, the paths of the certificate, key
and parameters are changed to /ssl/key|cert|dhparam, the default location was modified to point
to the Cryptpad ClusterIP Service and a new location /cryptpad_websocket was added, which is
necessary for Cryptpad to display all content. Listing 75 shows the configured locations.

location / {

proxy_pass http://cryptpad-http:3000;
proxy_set_header X-Real-IP $remote_addr;

proxy_set_header Host $host;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

client_max_body_size 150m;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
3
location /cryptpad_websocket {
proxy_pass http://cryptpad-http:3003;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

client_max_body_size 150m;

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";

Listing 75: Nginx configuration file locations

To mount the certificate, key, parameters and configuration file in the Nginx pod ConfigMaps
are used, which are generated in kustomization.yaml using a configMapGenerator (listing 76). The
Nginx deployment manifest nginx.yaml mounts these ConfigMaps and exposes port 443 using a
NodePort to port 30180.

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization
resources:

- "namespace.yaml"

- "nginx.yaml"

- "cryptpad.yaml"

namespace: cryptpad

configMapGenerator:

- name: cryptpad-config
behavior: create
files:

- config.js

- name: nginx-config
behavior: create
files:

- default.conf

32

- name: nginx-cert
behavior: create
files:

- ssl/cert

- name: nginx-key
behavior: create
files:

- ssl/key

- name: nginx-dhparam
behavior: create
files:

- ssl/dhparam.pem

Listing 76: Cryptpad Kustomization manifest

After deploying the system using kubectl apply -k . the following services and pods are created.
As seen in figure 15 the Cryptpad web interface is now accessible in the browser under the
URL nttps://g8-cryptpad.uia:30180. Important to note is, that this only works, when the two
hostnames are added to /etc/hosts, as shown in listing 69 and the Firefox Browser is used. More
to this in section 3.2.

$ kubectl get pods -n cryptpad

NAME READY STATUS RESTARTS AGE
cryptpad-5467959547-8tnsl 0/1 ContainerCreating O 43s
cryptpad-6d5495ffc4-d2z7f 1/1 Running 0 115s
nginx-6£976486f9-vndk8 1/1 Running 0 114s

$ kubectl get svc -n cryptpad

NAME TYPE PORT(S) AGE
cryptpad-http ClusterIP 3000/TCP,3001/TCP,3003/TCP 2m21s
nginx-http NodePort 443:30180/TCP 2m20s

Listing 77: Deployed cryptpad pods and services

@ | © CryptDrive - g8-cryp x = + v - O X

<« C @ O G == https://g8-cryptpad.uia:30180/drive/# X Y € © 0O N =

£ CryptDrive L Dbl
+ New Y Filter

Learn more about how CryptPad can work for you by reading our Documentation x

1]
(&)

Q Search...
Drive
© Recent

) Create as many nested folders here as you want to sort your files. x

Templates @

W Trash @

Rich text - Thu, N...

Storage:
0.02 MB used out of 50 MB

Figure 15: Accessing the Cryptpad web interface

33

2.5 Additional configuration
2.5.1 Adding Deployments to ArgoCD

After finishing the deployments for Bitwarden, Cryptpad and the monitoring stack, they were
all added to ArgoCD using the following commands:

argocd app create monitoring \

--repo https://gitlab.internal.uia.no/ikt210-g-23h-skyinfrastruktur/LabGroup8/final-project.git
\

--path mon/own \

—--dest-server https://kubernetes.default.svc \

--self-heal \

--sync-policy automated \

--sync-retry-limit 5 \

--revision main

argocd app set monitoring --auto-prune

Listing 78: Adding monitoring Deployment to ArgoCD

Q} argocd ykd ® bitwarden pid 0 cryptpad

Project: default Project: default Project default

Labels: Labels: Labels:

Status: W Healthy @ Synced Status: W Healthy @ Synced Status W Healthy @ Synced

Repository: https://gitlab.internal.uia.no/ikt210-g-23h-sk... Repository: https://gitlab.internal.uia.no/ikt210-g-23h-sk.. Repository: https://gitlab.internal.uia.no/ikt210-g-23h-sk..
Target Re... HEAD Target Re.. main Target Re... main

Path: cifargocd Path: apps/bitwarden Path: apps/cryptpad

Destinatio... in-cluster Destinatio... in-cluster Destinatio... in-cluster

Namespa.. argocd Namespa... Namespa..

Created At 11/25/2023 09:59:15 (a day ago) Created At 11/25/2023 11:06:35 (a day ago) Created At 11/25/2023 22:56:34 (20 hours ago)
Last Sync. 11/25/2023 09:59:30 (a day ago) Last Sync: 11/26/2023 11:59:59 (7 hours ago) Last Sync: 11/26/2023 12:10:25 (7 hours ago)

® monitoring f?

Project: default

Labels

Status: () Progressing @ Synced

Repository: https://gitlab.internal.uia.no/ikt210-g-23h-sk
Target Re. main

Path: mon/own

Destinatio. in-cluster

Namespa

Created At: 11/25/2023 22:58:50 (20 hours ago)

Last Sync: 11/25/2023 22:58:57 (20 hours ago)

' SYNC C'REFRESH © DELETE

Figure 16: All Deployments added as ArgoCD apps

2.5.2 Security Configurations

It was attempted to adhere to the Kubernetes hardening guidelines by the NSA in the following
ways. Where possible, containers were run as a different user than root if the software run-
ning inside the container allowed it. Secrets were encrypted using the Sealed Secrets package
(unencrypted configs and secrets are still present in the repository for educational purposes).
Additionally, each deployment was made in a separate namespace.

34

3 What problems the group encountered

3.1 Cilium CNI

When deciding on the Kubernetes techstack, at first it was decided, that Cilium would be used
for the CNI. However after installing it, the Cilium pods were never started. Looking at the
logs, the error in listing 79 was shown. After some research a script was found, which checks the
Linux kernel if all necessary flags are set for Cilium to function. This script showed the flags
CONFIG_BPF_JIT, CONFIG_FTRACE_SYSCALLS and CONFIG_KPROBE_EVENTS missing. Since these flags need
to be set, while compiling the kernel and could not be done at runtime, Cilium was dropped in
favour of Flannel.

level=fatal msg="Load overlay network failed" error="program cil_from_overlay: replacing clsact

qdisc for interface cilium_vxlan: operation not supported" interface=cilium_vxlan subsys=
datapath-loader

Listing 79: Cilium Error

3.2 Cryptpad Browser Compatibility

After installing Cryptpad, everything worked fine in the Firefox browser. When trying to access
the website from Chrome however, an error was displayed, as shown in figure 17. This seems to
be a general problem multiple people have had [15]. Since it worked in Firefox and project time
was nearing an end, this problem was not fixed.

@ CryptPad x| + ~ B & &

&« C A Notsecure | hitps://g8-cryptpad.uia:30180/drive/# < % @ » 0O &

B

00997048235#%7B"cfg"%3A%7B"baseUrl"%3A"%2Fdrive%2F"%2C"paths"%3A%7B"text"%3A"%2Fcomponents%2F

2Fjquery%2Fdist%2Fjquery.min"%2C"mermaid"%3A"%2Flib%2Fmermaid%2Fmermaid.min"%2C"json.sortify"%3A"%
l2Fcalendar%2Fdate-picker"%2C"netflux-client"%3A"%2Fcomponents%2Fnetflux-websocket%2Fnetflux-client"%2C
C"cm-extra"%3A"%2Flib%2Fcodemirror-extra-modes"%2C"asciidoctor"%3A"%2Flib%2Fasciidoctor%2Fasciidoctor.m|
/o2Fbower_components%2Ftweetnacl%2Fnacl-fast.min.js"%3A"%2Fcomponents%2Ftweetnacl%2Fnacl-fast.min.js"?
https%3A%2F%2Fg8-cryptpad.uia%3A30180"%2C"theme05"%3A"light"%2C"lang"%3A"en"%2C"time"%3A17010186

Figure 17: Cryptpad error in Chorme browser

3.3 Thanos Store Setup

When configuring Thanos, the Store system was also intended to be set up. when deploying
it, an error was shown, that no files could be created, as shown in listing 80. This could have
something to do with the connection credentials of the bucket not being correctly mounted to
the Store or a process not having the correct UID to access the files. Since time was running out,
this error could not be fixed. The corresponding manifests are however still in the repository
for education purposes.
t5=2023-11-26T17:18:36.150291383Z caller=main.go:135 level=error err="mkdir /var/thanos/store/
meta-syncer: permission denied\nmeta fetcher\nmain.runStore\n\t/app/cmd/thanos/store.go:347\
nmain.registerStore.funcl\n\t/app/cmd/thanos/store.go:226\nmain.main\n\t/app/cmd/thanos/main

.go:133\nruntime.main\n\t/usr/local/go/src/runtime/proc.go:267\nruntime.goexit\n\t/usr/local
/go/src/runtime/asm_amd64.s:1650\npreparing store command failed...."

Listing 80: Thanos Store error

35

4 Reflection

This task was done with an additional time constraint, since I am going on holidays on the 28.
November and did not want to do the project during that time. Overall the project worked out
pretty smoothly. I sank a little too much time into Cilium in the beginning, but after I switched
to Flannel, I was able to make quick progress.

Setting up the monitoring was quite the chore and since the requirements in the project task
description are very vague. I don’t know if I have done too little or too much. This is a general
complaint I have: Please make this projects task description more specific. It wasn’t clear, if
I should add the two applications (Cryptpad and Bitwarden) to the monitoring, or if it was
enough, to just configure the monitoring itself and proof that it works. The same thing with the
Sealed Secrets and the ArgoCD Image Updates. I decided to use the Sealed Secrets, because it
made sense in the context, but I saw no real use case for Image Updater, which is why I only
installed it.

Installing Bitwarden worked out better than I expected, since I could pretty much just translate
the docker-compose.yaml found in the Bitwarden repository into Kubernetes manifests. I strug-
gled a lot with Cryptpad, since I wasn’t sure how to set it up, in developement or production
mode. I ended up with functional deployment by using entries in the local hosts file.

Since the requirement was given to use Kustomize, but I didn’t really find that much of a use
case for it, I only used it to set the namespaces and sometimes to generate some ConfigMaps.
Maybe in a more elaborate monitoring setup it could also be useful to set a label, which defines
that a resource should be monitored.

As a general reflection of the course, I think I learned the most during the exercises and the
project. The lectures were sadly not very helpful. An even bigger focus on examples during
lectures may help. Giving soft deadlines for the exercises was a nice guideline, to not fall to far
behind. It would have been very helpful to receive feedback on the exercises earlier. Since I
got my first feedback only after I already handed in another two assignments, I wasn’t able to
implement that feedback.

36

References

[1] “Flannel.” (Nov. 1, 2023), [Online|. Available: https://github . com/flannel -io/
flannel (visited on 11/20/2023).

[2] “Rook.” (Nov. 24, 2023), [Online]. Available: https://github.com/rook/rook.git
(visited on 11/24/2023).

[3] “Installation - argo CD image updater.” (2023), [Online]. Available: https://argocd-
image - updater . readthedocs . io/en/ stable/ install /installation/ (visited on
11/21/2023).

[4] Bitnami. “Sealed-secrets.” (2023), [Online]. Available: https://github.com/bitnami-
labs/sealed-secrets (visited on 11/21/2023).

[5] “Prometheus operator getting started,” Prometheus Operator. (2023), [Online]. Available:
https://prometheus-operator.dev/docs/user-guides/getting-started/ (visited
on 11/24/2023).

[6] “How to setup prometheus node exporter on kubernetes.” (Apr. 6, 2021), [Online]. Avail-
able: https://devopscube.com/node-exporter-kubernetes/ (visited on 11,/24/2023).

[7] “Node exporter full,” Grafana Labs. (2023), [Online]. Available: https://grafana.com/
grafana/dashboards/1860-node-exporter-full/ (visited on 11/26,/2023).

8] kube-prometheus. “Kube-prometheus manifests.” (2023), [Online]. Available: https://
p
github.com/prometheus-operator/kube-prometheus/tree/main/manifests (visited
on 11/26/2023).

[9] Prometheus Operator. “Blackbox exporter,” Prometheus Operator. (Mar. 8, 2021), [On-
line]. Available: https://prometheus-operator.dev/docs/kube/blackbox-exporter/
(visited on 11,/26/2023).

[10] “Prometheus blackbox exporter,” Grafana Labs. (2023), [Online|. Available: https://

grafana. com/grafana/dashboards/7587 - prometheus-blackbox-exporter/ (visited
on 11/26/2023).

[11] “Thanos quick start.” (2023), [Online]. Available: https://thanos.io/v0.12/thanos/
quick-tutorial.md/ (visited on 11/25/2023).

[12] “Install and deploy - linux — bitwarden help center,” Bitwarden. (2023), [Online]. Avail-
able: https://bitwarden.com/help/install-on-premise-1linux/ (visited on 11/22/2023).

[13] cryptpad. “Cryptpad repository.” (Nov. 24, 2023), [Online|. Available: https://github.
com/cryptpad/cryptpad (visited on 11/26,/2023).

[14] cryptpad. “Cryptpad nginx example default.conf.” (Nov. 24, 2023), [Online|. Available:
https://raw. githubusercontent . com/ cryptpad/cryptpad/main/docs/example .
nginx.conf (visited on 11/26/2023).

[15] jbhanks. “Cryptpad different results in different browsers.” (Jan. 13, 2021), [Online]. Avail-
able: https://github.com/cryptpad/cryptpad/issues/673 (visited on 11/26,/2023).

37

https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://github.com/rook/rook.git
https://argocd-image-updater.readthedocs.io/en/stable/install/installation/
https://argocd-image-updater.readthedocs.io/en/stable/install/installation/
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets
https://prometheus-operator.dev/docs/user-guides/getting-started/
https://devopscube.com/node-exporter-kubernetes/
https://grafana.com/grafana/dashboards/1860-node-exporter-full/
https://grafana.com/grafana/dashboards/1860-node-exporter-full/
https://github.com/prometheus-operator/kube-prometheus/tree/main/manifests
https://github.com/prometheus-operator/kube-prometheus/tree/main/manifests
https://prometheus-operator.dev/docs/kube/blackbox-exporter/
https://grafana.com/grafana/dashboards/7587-prometheus-blackbox-exporter/
https://grafana.com/grafana/dashboards/7587-prometheus-blackbox-exporter/
https://thanos.io/v0.12/thanos/quick-tutorial.md/
https://thanos.io/v0.12/thanos/quick-tutorial.md/
https://bitwarden.com/help/install-on-premise-linux/
https://github.com/cryptpad/cryptpad
https://github.com/cryptpad/cryptpad
https://raw.githubusercontent.com/cryptpad/cryptpad/main/docs/example.nginx.conf
https://raw.githubusercontent.com/cryptpad/cryptpad/main/docs/example.nginx.conf
https://github.com/cryptpad/cryptpad/issues/673

Listings

© 00~ O U W N

QU R R R R R R R R W WWWWWWWWwWwhooNnonNnmNnDDNDD = === = =
QO OO0 TITO TR WNHFEF OO IDDUUERE WNDHFE OO UR WN OO0 Uk W EREO

Kubernetes Cluster Openstack Nodes.
External Access NodePorts
Configuration of local /etc/hostso o oL
Access and Passwords L
Terraform network configuration L Lo
Terraform variables.tf file oo
Terraform floating address and block storage volume creation
Terraform node creation and assignment of additional resources
Setting CRI-O environment variables
Installing CRI-O
Starting and enabling CRI-O
Installation of kubeadm
Initialization of cluster Lo
Configuring kubectl Lo
Removing NoSchedule taint from master
Joining worker nodes to cluster Lo oL
Validating cluster nodes L Lo
Installing Flannel manifest oL oL
Validating Flannel installation 0 L.
Installing common Rook resources
Enabling discovery daemon in Rook operator
Installing and validating Rook operator
Installing and validating Rook cluster
Setting up Rook toolbox
Validating Ceph cluster state
Adding Rook storage class
Installing ArgoCD L
ArgoCD Services L
Installing ArgoCD CLI o
Getting ArgoCD Default Password

© © © © 0000 I JJ~JO0 O OO OOy O OO OO ix i W W NN

Adding GitLab Repository to ArgoCD 10
Creating ArgoCD app inside ArgoCD 10
Installing ArgoCD Image Updater 11
Checking ArgoCD pods 11
Testing Image Update 11
Installing Sealed Secrets 12
Checking Sealed Secrets pod L 12
Installing kubeseal CLI. 12
Testing Sealed Secrets 12
Installation of Prometheus Operator 13
Prometheus Operator pod running 13
Setup of example application to test PodMonitor 13
Setup of example application to test PodMonitor 14
Node Exporter DaemonSet configuration 15
Node Exporter ServiceMonitor configuration. 16
Node Exporter Pods 16
Grafana Deployment 17
Grafana datasource.yaml L L L L L 17
Prometheus internal Service Lo 18
Blackbox Exporter Deployment o oL 19

51
52
93
54
95
o6
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Blackbox Exporter Probe 19

Alertmanager and AlertmanagerConfig setup 20
Example alert PrometheusRule 00000 21
Adding alerting to Prometheus resource 21
Prometheus Thanos sidecar and replicas 23
Ceph bucket for Thanos object storage 23
Connection details in thanos-config.yaml 23
Sealing bucket connection details 23
Thanos Query Deployment, 24
Thanos Query Services e 24
Deployed Pods and Services in mon namespace o 0.0 25
Generating Bitwarden Config L L oL 26
Example of PVC in storage.yaml 26
Sealing of env.yaml Lo 27
Dockerfile of Init-Container to copy bwdata into persistent volume 27
Identity deployment in docker-compose.yaml 28
Translated Kubernetes Identity deployment Init-Container 28
Deployed Bitwarden pods and serviceso Lo 29
Setting domain names for Cryptpad access in local hosts file 30
Creating certificates for the Cryptpad domains 30
Generating Diffie-Hellman parametes 30
Cryptpad PVC example e 30
Cryptpad Service configuration L oL 31
Cryptpad Deployment 31
Nginx configuration file locationso L. 32
Cryptpad Kustomization manifest 32
Deployed cryptpad pods and services 33
Adding monitoring Deployment to ArgoCD, 34
Cilium Error e 35
Thanos Store error L e e 35

39

List of Figures

10

11

12

13

14

15

16

17

Changing ArgoCD Password 9
Creating GitLab Access Token 10
Validating Connection of Repository 10
ArgoCD app on ArgoCD management site 11
Accessing Prometheus and querying example-app "up” metrics 14
Node Exporter targets in Prometheus 16
Node Exporter metrics in Grafana 18
Blackbox Exporter metrics in Prometheus 20
Blackbox Exporter metrics in Grafana 20
Alert Managers in Prometheus 0oL 22
Example alert shown in both Prometheus and Alert Manager 22
Thanos Query web interface displaying redundant Prometheus instances 25
Generated files after running Bitwarden installation script 27
Accessing the Bitwarden web interface 29
Accessing the Cryptpad web interface 33
All Deployments added as ArgoCD apps oo 34
Cryptpad error in Chorme browser 35

40

